تعداد نشریات | 418 |
تعداد شمارهها | 9,997 |
تعداد مقالات | 83,551 |
تعداد مشاهده مقاله | 77,521,896 |
تعداد دریافت فایل اصل مقاله | 54,559,840 |
ارائه مدل ارزیابی عملکرد بانکهای بورسی کشور با رهیافت داده کاوی | ||
مهندسی مالی و مدیریت اوراق بهادار | ||
مقاله 7، دوره 11، شماره 42، فروردین 1399، صفحه 172-194 اصل مقاله (883.84 K) | ||
نوع مقاله: مقاله پژوهشی | ||
نویسندگان | ||
الهام آدخ؛ عارفه فدوی اصغری* ؛ محمد ابراهیم پورزرندی | ||
گروه مدیریت صنعتی دانشکده مدیریت، واحد تهران مرکز، دانشگاه آزاد اسلامی، تهران، ایران | ||
چکیده | ||
با رشد بانکهای خصوصی و مؤسسات مالی و اعتباری،رقابت بین آنها به منظور ارائه خدمات بهتر افزایش یافته است. با توجه به اهمیت موضوع،تدوین یک الگوی جامع و کامل برای ارزیابی بانکها ضروری به نظر می رسد. هر سازمان برای آگاهی از نقاط قوت و ضعف خود به ویژه در محیط های پویا نیازمند ارزیابی عملکرد می باشد. موضوع ارزیابی عملکرد آنقدر مورد توجه است که حتی در این باره صاحبنظران مدیریت معتقدند: "آنچه را که نتوان ارزیابی نمود، نمی توان مدیریت کرد".بنابراین بانک ها نیز همانند سایرسازمان ها در ایران برای ارائه خدمات متنوع تر و سریع ترو همچنین توسعه خود ، نیازمند ارزیابی عملکرد می باشند.[6] هدف اصلی این مقاله ارائه مدلی به منظور ارزیابی عملکرد بانکهای بورسی کشور با استفاده از روشهای داده کاوی می باشد. در این پژوهش، 4 مدل داده کاوی درخت تصمیم C5.0، درخت تصمیم C4.5، الگوریتم بیز و جنگل تصادفی، به منظور ارزیابی عملکرد بانک های پذیرفته شده در بورس اوراق بهادار تهران پیاده سازی و با یکدیگر مقایسه می گردند. بدین منظور نمونه ای مشتمل بر 28 نسبت مالی شامل نسبت های سودآوری، نقدینگی، حوزه کیفیت مدیریت ، حوزه کیفیت دارایی و کفایت سرمایه در 18 بانک بورس اوراق بهادار تهران درفاصله بین سالهای 1393 تا 1396 به عنوان متغیرهای مستقل و عملکرد بانکها درسه دسته قابل قبول، غیرقابل قبول ومتوسط به عنوان متغیر وابسته انتخاب گردیدند. نتایج حاکی از آن است که در بین کلیه مدلها درخت تصمیم C5.0 با صحت 94.4% بهترین مدل ارائه شده در این پژوهش می باشد. | ||
کلیدواژهها | ||
ارزیابی عملکرد؛ داده کاوی؛ نسبت های مالی؛ بانکهای پذیرفته شده در بورس اوراق بهادار | ||
مراجع | ||
اسماعیلی مهدی. داده کاوی مفاهیم و تکنیک ها.ویراست سوم .انتشارات نیازدانش،1393. البرزی محمود،محمد پورزرندی محمد ابراهیم، خان بابایی محمد. به کارگیری الگوریتم ژنتیک در بهینه سازی درختان تصمیم گیری برای اعتبار سنجی مشتریان بانکها. نشریه مدیریت فناوری اطلاعات، دوره 2، شماره 4، بهارو تابستان 1389: 38-23. باقرپور و لاشانی محمد علی ،ساعی محمد جواد ، مشکانی علی ، باقری مصطفی. پیش بینی گزارش حسابرس مستقل در ایران ، رویکرد داده کاوی. مجله تحقیقات حسابداری دوره 19 ، سال 1391 :134-150. حجازی رضوان،محمدی شاپور،اصلانی زهرا، آقاجانی مجید.پیش بینی مدیریت سود با استفاده از شبکه عصبی و درخت تصمیم در شرکت های پذیرفته شده در بورس اوراق بهادار تهران. مجله بررسی های حسابداری و حسابرسی دانشکده مدیریت دانشگاه تهران، دوره 19، شماره 2، تابستان 1391 : 46-31. صادقی حجت الله، غنی ورزنه فریبا. پیش بینی عملکرد مالی شرکتهای بورسی اوارق بهادار با رویکرد الگوریتم درخت تصمیم با استفاده از ROE به عنوان متغیر پیش بین.رشت، اولین کنفرانس بین المللی حسابداران و مدیریت هزاره سوم، دی ماه 1394 . صالحی سیدمرتضی،نیکوکارغلامحسین،محمدی ابوالفضل،تقی نتاج غلامحسین.طراحی الگوی ارزیابی عملکرد شعب بانک ها و مؤسسات مالی و اعتباری(مورد مطالعه: بانک قوامین). مجله دانشکده مدیریت دانشگاه تهران. دوره 3،شماره 7.بهار90 : 142-127 . غضنفری مهدی، علیزاده سمیه، تیمورپور بابک. داده کاوی و کشف دانش.چاپ پنجم. انتشارات دانشگاه علم و صنعت،1395. مهدوی غلامحسین، قربانی اصغر.بررسی مقایسه ای نقش شاخص های نوین و سنتی نقدینگی در ارزیابی عملکرد مالی شرکت های پذیرفته شده در بورس اوراق بهادار تهران. مجله پژوهش های حسابداری مالی دانشگاه اصفهان، دوره 4، شماره 1، بهار 1391: 88-67. مهرانی ساسان، مهرانی کاوه،کرمی غلامرضا . استفاده از اطلاعات تاریخی مالی و غیرمالی جهت تفکیک شرکتهای موفق از ناموفق .مجله بررسی های حسابداری و حسابرسی، دوره 38، سال 1383: 77-92. میرغفوری سید حبیب اله، شفیعی رودپشتی میثم، ندافی غزاله. ارزیابی عملکرد مالی با رویکرد تحلیل خاکستری(مورد: شرکت های مخابرات استانی).فصلنامه علمی پژوهشی دانش مالی تحلیل اوارق بهادار ، شماره 16، زمستان 1391: 76-61.
Aitkenhead, M. J., A co-evolving decision tree classification method, Journal of Expert Systems with Applications,2008,34(1), P.18-25.
Chattamvelli ,R., Data mining Algorithm, Alpha science, 2011. (Book) Delen, D., Kuzey, C., and Uyar, A., Measuring firm performance using financial ratios: A Decision tree approach, Journal of Expert System with Application 2013,40(10),P.3970-3983. Gupta, G.K., Introduction to Data Miningwith Case Studies, Prentice - Hall of India, second edition , 2011. (Book) Hand, D. J., Mannila, H., and Smyth, P., Principles of data mining. MIT pressCambridge, Massachusetts London England,2001.(Book) Koyuncugil,A.S., and ozgulbas , N. Financial early Warning system model and data mining application for risk detection , Journal of Expert Systems with Applications ,2012,39(6) , P.6238-6253.
Larose, D. T., Discovering Knowledge in Data, an Introduction to Data Mining, New Jersey, Wiley,2005. (Book) Porzan, M., Cristina, A. and Danescu, T., The role of the risk management and of the activities of internal control in supplying useful information through the accounting and fiscal reports, Journal of Procedia and Finance, 2012, 3, P.1099-1106. Witten, I., Frank, E., Practical Machine Learning Tools and Techniques ,Morgan Kaufmann Series in Data Management Systems, United Kingdom, third edition, 2011 .(Book) Yeh, C., Chi, D. j., and Lin, Y. R., Going-Concern prediction UsingHybrid Random Forests and Rough Set Approach, Journal of Information Sciences, 2014, 254, P.98-110. | ||
آمار تعداد مشاهده مقاله: 621 تعداد دریافت فایل اصل مقاله: 646 |