- Ahmed, J., Arfat, Y.A., Bher, A., Mulla, M., Jacob, H., and Auras, R. (2018). Active chicken meat packaging based on polylactide films and bimetallic Ag-Cu nanoparticles and essential oil. Journal of Food Science, 83(5):1299–1310.
- Al-Shabib, N.A., Husain, F.M., Ahmed, F., Khan, R.A., Ahmad, I., Alsharaeh, E., Khan, M.S., Hussain, A., Rehman, M.T., Yusuf, M. et al. (2016). Biogenic synthesis of zinc oxide nanostructures from nigella sativa seed: Prospective role as food packaging material inhibiting broad-spectrum quorum sensing and biofilm. Scientific Report, 6:36761.
- Applerot, G., Lellouche, J., Lipovsky, A., Nitzan, Y., Lubart, R., Gedanken, A. and Banin, E. (2012). Understanding the antibacterial mechanism of CuO nanoparticles: revealing the route of induced oxidative stress. Small, 8(21):3326–3337.
- Azeredo, H.M.C.D. (2012). In: nano-antimicrobials progress and prospects, Cioffi, N. and Rai, M. (Editors), Antimicrobial activity of nanomaterials for food packaging applications. First edition, Springer. P. 375.
- Bala, T., Armstrong, G., Laffir, F. and Thornton, R. (2011). Titania – silver and alumina silver composite nanoparticles: novel, versatile synthesis, reaction mechanism and potential antimicrobial application. Journal of Colloid and Interface Science, 356(2):395 – 403.
- Bastarrachea, L.J., Denis-Rohr, A., and Goddard, J.M. (2015). Antimicrobial Food Equipment Coatings: Applications and Challenges. Annual Review of Food Science and Technology, 6:97–118.
- Beak, S., Kim, H. and Song, K.B. (2017). Characterization of an olive flounder bone gelatin-zinc oxide nanocomposite film and evaluation of its potential application in spinach packaging. Journal of Food Science, 82:2643–2649.
- Chen, L., Sun, X., Liu, Y., Zhou, K. and Li, Y. (2004). Porous ZnAl2O4 synthesized by a modified citrate technique. Journal of alloys and compounds, 376(1-2): 257-261.
- Davar, F. and Salavati-Niasari, M. (2011). Synthesis and characterization of spinel-type zinc aluminate nanoparticles by a modified sol–gel method using new precursor. Journal of Alloys and Compounds, 509(5):2487-2492.
- Deus, D., Kehrenberg, C., Schaudien, D., Klein, G. and Krischek, C. (2017). Effect of a nano-silver coating on the quality of fresh turkey meat during storage after modified atmosphere or vacuum packaging. Pollution Science, 96:449–457.
- Diao, M. and Yao, M. (2009). Use of zero-valent iron nanoparticles in inactivating microbes. Water research, 43(20): 5243-5251.
- Gautam, G. and Mishra, P. (2017). Development and characterization of copper nanocomposite containing bilayer film for coconut oil packaging. Journal of Food Processing and Preservation, 41:13243.
- Hamed, M.E., Mashad, A. and Pan, Z. (2015). Food decontamination using nanomaterials. MOJ Food process and Technology, 1(2):40‒41.
- Hassanpour, P., Panahi, Y., Ebrahimi-Kalan, A., Akbarzadeh, A., Davaran, S., Nasibova, A.N., et al., (2018). Biomedical applications of aluminium oxide nanoparticles. Micro and Nano Letters, 13(9):1227–1231.
- Huang, L., Li, D., Lin, Y., Evans, D.G. and Duan, X. (2005). Influence of nano-MgO particle size on bactericidal action against Bacillus subtilis var. niger. Chinees Science Bulletin, 50(6):514–519.
- Jiang, H., Manolache, S. and Te-Hsing, W. (2004). Plasma-enhanced deposition of silver nanoparticles onto polymer and metal surfaces for the generation of antimicrobial characteristics. Journal of Applied Polymer Science, 93(3):1411-1422.
- Jiang, W., Mashayekhi, H. and Xing, B. (2009). Bacterial toxicity comparison between nano- and micro-scaled oxide particles. Environmental Pollution, 157(5):1619–1625.
- Joye, I.J. and McClements, D.J. (2014). Biopolymer-based nanoparticles and microparticles: fabrication, characterization, and application. Current Opinion in Colloidal Interface Sciences, 19:417–427.
- Kim, Y.H., Lee, D.K., Cha, H.G., Kim, C.W. and Kang, Y.S. (2007). Synthesis and characterization of antibacterial Ag-SiO2 nanocomposite. Journal of Physical Chemistry C, 111(9):3629–3635.
- Kuang, H.J., Yang, L., Xu, H.Y. and Zhang, W.Y. (2015). Antibacterial properties and mechanism of zinc oxide nanoparticles. Chinese Journal of Pharmacology and Toxicology, 2(29):153–154.
- Li, Q., Sherwood, J.S. and Logue, C.M. (2004). The prevalence of Listeria, Salmonella, Escherichia coli and E. coli O157:H7 on bison carcasses during processing. Food Microbiology, 21:791–799.
- Lomate, G.B., Dandi, B. and Mishra, S. (2018). Development of antimicrobial LDPE/Cu nanocomposite food packaging film for extended shelf life of peda. Food Packaging and Shelf Life, 16:211–219.
- Lu, Y., Yang, F.X. and Zhang, H.G. (2013). Preparation and Properties of Silver-loaded LDPE Antibacterial Films. Packaging Engineering, 11:27–30.
- Menon, S.G., Hebbar, D.N., Kulkarni, S.D., Choudhari, K.S. and Santhosh, C. (2017). Facile synthesis and luminescence studies of nanocrystalline red emitting CrZnAl2O4 phosphor. Materials Research Bulletin, 86: 63-71.
- Mizielinska, M., Kowalska, U., Jarosz, M. and Suminska, P. (2018). A comparison of the effects of packaging containing nano ZnO or polylysine on the microbial purity and texture of Cod (Gadus morhua) fillets. Nanomaterials, 8:158.
- Nafisi Bahabadi, M., Hosseinpour Delavar, F., Mirbakhsh, M., Niknam, K.H. and Johari, S.A. (2016). Assessing antibacterial effect of filter media coated with silver nanoparticles against Bacillus spp. ISMJ, 19(1): 1-14. [In Persian]
- Nakai, S.A. and Siebert, K.J. (2004). Organic acid inhibition models for Listeria innocua, Listeria ivanovii, Pseudomonas aeruginosa and Oenococcus oeni. Food Microbiology, 21:67–72.
- Percival, S.L., Bowler, P.G. and Dolman, J. (2007). Antimicrobial activity of silver-containing dressings on wound microorganisms using an in vitro biofilm model. International Wound Journal, 4(2):186–191.
- Poole, C.P.J. and Owens, F.J. (2003). Introduction to nanotechnology. Wiley-Inter science, 8(2): 29-48.
- Rajkowski, K.T. (2012). Thermal inactivation of Escherichia coli O157:H7 and Salmonella on catfish and tilapia. Food Microbiology, 30:427-431.
- Ravichandran, K., Rathi, R., Baneto, M., Karthika, K., Rajkumar, P.V., Sakthivel, B., and Damodaran, R. (2015). Effect of Fe+ doping on the antibacterial activity of ZnO powder. Ceramics International, 41:3390–3395.
- Ravichandran, R. (2010). Nanotechnology applications in food and food processing: innovative green approaches, opportunities and uncertainties for global market. International Journal of Green Nanotechnology Physics and Chemistry, 1:72–96.
- Sadiq, I.M., Chowdhury, B., Chandrasekaran, N. and Mukherjee, A. (2009). Antimicrobial sensitivity of Escherichia coli to alumina nanoparticles. Nanomedicine: Nanotechnology, Biology and Medicine, 5(3):282–286.
- Salmani, M.H., Mirhosieni, M., Moshtagi laregani, M. and Akrami, K. (2017). Survey of silver nanoparticles antibacterial activity against gram-positive and gram-negative bacteria in vitro. J Tolooe behdasht Sci, 15(1): 76-84. [In Persian]
- Sarkar, P., Choudhary, R., Panigrahi, S., Syed, I., Sivapratha, S. and Dhumal, C.V. (2017). Nano-inspired systems in food technology and packaging. Environmental Chemistry Letter, 15:607–622.
- Shahverdi, A.R., Fakhimi, A., Shahverdi, H.R. and Minaian, S. (2007). Synthesis and effect of silver nanoparticles on the antibacterial activity of different antibiotics against Staphylococcus aureus and Escherichia coli. Nanomedicine, 3:168–171.
- Sharma, N., Jandaik, S., Kumar, S., Chitkara, M. and Sandhu, I.S. (2016). Synthesis, characterisation and antimicrobial activity of manganese-and iron-doped zinc oxide nanoparticles. Journal of Experimental Nanoscience, 11:54–71.
- Sirelkhatim, A., Mahmud, S., Seeni, A., Kaus, N.H.M., Ann, L.C., Bakhori, S.K.M., Hasan, H. and Mohamad, D. (2015). Review on zinc oxide nanoparticles: antibacterial activity and toxicity mechanism. Nano Microbiology Letter, 7:219–242.
- Smolkova, B., Yamani, N., Collins, A.R., Gutleb, A.C. and Dusinska, M. (2015). Nanoparticles in food. Epigenetic changes induced by nanomaterials and possible impact on health. Food Chemical Toxicology, 77:64–73.
- Sodagar, A., Bahador, A., Pourhajibagher, M., Ahmadi, B. and Baghaeian, P. (2016). Effect of addition of Curcumin nanoparticles on antimicrobial property and shear bond strength of orthodontic composite to bovine enamel. Journal of Dentistry, 13(5):373-82.
- Sondi, I. and Salopek-Sondi, B. (2004). Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. Journal of Colloidal Interface Science, 275:177–182.
- Stankic, S., Suman, S., Haque, F., and Vidic, J. (2016). Pure and multi metal oxide nanoparticles: synthesis, antibacterial and cytotoxic properties. Nanobiotechnology, 14(73):1-20.
- Suo, B., Li, H., Wang, Y., Li, Z., Pan, Z. and Ai, Z. (2017). Effects of ZnO nanoparticle-coated packaging film on pork meat quality during cold storage. Journal of Science of Food and Agriculture, 97:2023–2029.
- Tavakoli, H., Rastegar, H., Taherian, M., Samadi, M. and Rostami, H. (2017). The effect of nano-silver packaging in increasing the shelf life of nuts: An in vitro model. Italian Journal of Food Safety, 6: 68-74.
- Thakkar, K.N., Mhatre, S.S. and Parikh, R.Y. (2010). Biological synthesis of metallic nanoparticles. Nanomedicine and Nanotechnology, 6(2): 257-262.
- Tony Jin, T. and He, Y. (2011). Antibacterial activities of magnesium oxide (MgO) nanoparticles against foodborne pathogens. Journal of Nanoparticle Research, 13:6877–6885.
- Verma, S.K., Prabhat, K., Goyal, L., Rani, M. and Jain, A. (2010). A critical review of the implication of nanotechnology in modern dental practice. National Journal of Maxillofacial Surgery, 1(1):41-44.
- Vidic, J., Stankic, S., Haque, F., Ciric, D., Le Goffic, R., Vidy, A., Jupille, J. and Delmas, B. (2013). Selective antibacterial effects of mixed ZnMgO nanoparticles. Journal of Nanoparticle Research, 15:1595.
- Yamamoto, O. (2001). Influence of particle size on the antibacterial activity of zinc oxide. International Journal of Inorganic Materials, 3:643–646.
- Yang, F., Liu, Q.L. and Lei, B. (2006). Research on the Application of Nano-Zinc Oxide. Anhui Chemical Industry, (1):13 –15.
- Yoon, K., Byeon, J.H., Park, J. and Hwang, J. (2007). Susceptibility constants of Escherichia coli and Bacillus subtilis to silver and copper nanoparticles. Science of the Total Environment, 373: 572–575.
- Zhang, H. (2013). Application of Silver Nanoparticles in Drinking Water Purification. University of Rhode Island; 2013. 29 p.
- Zhang, M., Zhang, C., Zhai, X., Luo, F., Du, Y. and Yan, C. (2019). Antibacterial mechanism and activity of cerium oxide nanoparticles. Science China Materials, 62(11):1727–1739.
- Ziyaadini, M., Zahedi, M.M. and Dehghan-Rahimi, A. (2018). Enhanced photocatalytic degradation of 2,4-dichlorophenol in water solution using Sr-doped ZnAl2O4 nanoparticles. Journal of Particle Science and Technology, 4:101-109.
|