تعداد نشریات | 418 |
تعداد شمارهها | 10,005 |
تعداد مقالات | 83,629 |
تعداد مشاهده مقاله | 78,556,686 |
تعداد دریافت فایل اصل مقاله | 55,728,428 |
On the zeros and critical points of a polynomial | ||
Mathematical Analysis and its Contemporary Applications | ||
دوره 4، شماره 1، فروردین 2022، صفحه 25-28 اصل مقاله (280.82 K) | ||
نوع مقاله: Original Article | ||
شناسه دیجیتال (DOI): 10.30495/maca.2021.1938758.1028 | ||
نویسندگان | ||
Mohammad Ibrahim Mir؛ Irfan Ahmad Wani* ؛ Ishfaq Nazir | ||
Department of Mathematics, University of Kashmir, South Campus, Anantnag 192101, Jammu and Kashmir, India | ||
چکیده | ||
Let $P(z)=a_0 + a_1z + \dots + a_{n-1}z^{n-1}+z^n$ be a polynomial of degree $n.$ The Gauss-Lucas Theorem asserts that the zeros of the derivative $P^\prime (z)= a_1 + \dots +(n-1) a_{n-1}z^{n-2}+nz^{n-1},$ lie in the convex hull of the zeros of $P(z).$ Given a zero of $P(z)$ or $P^\prime (z),$ A. Aziz [1], determined regions which contain at least one zero of $P(z)$ or $P^\prime (z)$ respectively. In this paper, we give simple proofs and improved version of various results proved in [1], concerning the zeros of a polynomial and its derivative. | ||
کلیدواژهها | ||
polynomial؛ zeros؛ critical points؛ half plane؛ circular region | ||
آمار تعداد مشاهده مقاله: 129 تعداد دریافت فایل اصل مقاله: 184 |