- [1] Corominas-Roso, I. Ibern, M. Capdevila, R. Ramon, C. Roncero, J. Ramos-Quiroga, “Benefits of EEG-neurofeedback on the modulation of impulsivity in a sample of cocaine and heroin long-term abstinent inmates: a pilot study”, International Journal of Offender Therapy and Comparative Criminology, vol. 64, no. 12, pp. 1275-1298, 2020, https://doi.org/10.1177/0306624X2090470.4.
- [2] Marvi, J. Haddadnia, M.R.F. Bordbar, “Evaluation of drug abuse on brain function using power spectrum analysis of electroencephalogram signals in methamphetamine, opioid, cannabis, and multi-drug abuser groups”, Journal of Biomedical Physics and Engineering, vol. 13, no. 2, pp. 181-192, March/April 2023,https://doi.org/10.31661/jbpe.v0i0.2210-1550.
- [3] R. Yousefi, A. Dehghani, H. Taghaavifar. "Enhancing the accuracy of electroencephalogram-based emotion recognition through Long Short-Term Memory recurrent deep neural networks." Frontiers in Human Neuroscience vol 17, Article Number 1174104,2023.
- [4] N. Dar, M.U. Akram, R. Yuvaraj, S.G. Khawaja, M. Murugappan, “EEG-based emotion charting for Parkinson's disease patients using Convolutional Recurrent Neural Networks and cross dataset learning”, Computers in Biology and Medicine, vol. 144, Article Number: 105327, 2022, https://doi.org/10.1016/j.compbiomed.2022.105327.
- [5] M. Hira, D.F. Gillies, “A review of feature selection and feature extraction methods applied on microarray data”, Advances in Bioinformatics, vol. 2015, Article Number: 98363, June 2015, https://doi.org/10.1155/2015/198363.
- [6] V. Wankar, P. Shah, R. Sutar, "Feature extraction and selection methods for motor imagery EEG signals: A review", Proceeding of the IEEE/I2C2, pp. 1-9, Coimbatore, India, June 2017, doi: 10.1109/I2C2.2017.8321831.
- [7] Bolón-Canedo, N. Sánchez-Maroño, A. Alonso-Betanzos, J.M. Benítez, F. Herrera, “A review of microarray datasets and applied feature selection methods”, Information Sciences, vol. 282, pp. 111-135, Oct. 2014, https://doi.org/10.1016/j.ins.2014.05.042.
- [8] Chen, Y. Cai, A. Li, Y. Su, K. Jiang, “EEG feature selection method based on maximum information coefficient and quantum particle swarm”, Scientific Reports, vol. 13, Article Number: 14515, Sept. 2023, https://doi.org/10.1038/s41598-023-41682-5.
- [9] Sharma, H.K. Meena, "Emerging trends in EEG signal processing: A systematic review", SN Computer Science, vol. 5, no. 4, Article Number: 415, April 2024, https://doi.org/10.1007/s42979-024-02773-w.
- Jain, R. Raja, S. Srivastava, P.C. Sharma, J. Gangrade, R. Manoj, "Analysis of EEG signals and data acquisition methods: a review", Computer Methods in Biomechanics and Biomedical Engineering: Imaging and Visualization, vol. 12, no. 1, Feb. 2024, https://doi.org/10.1080/21681163.2024.2304574.
- Aziz, J. Dirkaoui, M. Ertel, M. Chakkouch, F. Elomari, "The contribution of numerical EEG analysis for the study and understanding of addictions with substances", International Journal of Advanced Computer Science and Applications, vol. 14, no. 5, 2023, https://doi.org/10.14569/IJACSA.2023.0140534.
- Pandria, L. Kovatsi, A.B. Vivas, P.D. Bamidis. "Resting-state abnormalities in heroin-dependent individuals", Neuroscience, vol. 378, pp. 113-145, May 2018, https://doi.org/10.1016/j.neuroscience.2016.11.018.
- Montazeri, M. R., Yousefi, K, Shojaei, & G. Shahgholianm, “Fast adaptive fuzzy terminal sliding mode control of synergistic movement of the hip and knee joints (air-stepping) using functional electrical stimulation: A simulation study”, Biomedical Signal Processing and Control, vol. 66, pp. 102445, https://doi.org/10.1016/j.bspc.2021.102445.
- T, Zeng, S. Li, L. Wu, Z. Feng, X. Fan, J. Yuan, X. Wang, Meng, H. Ma, G. Zeng, C. Kang, J. Yang, "A Comparison study of impulsiveness, cognitive function, and P300 components between gamma-hydroxybutyrate and heroin-addicted patients: preliminary findings", Frontiers in Human Neuroscience, vol. 16, Article Number: 16:835922, April 2022, https://doi.org/10.3389/fnhum.2022.835922.
- Zeng, B. Yang, X. Gu, Y. Li, X. Xia, S. Gao. "CNN-based EEG classification method for drug use detection", Proceedings of the ICCPR, pp. 418-423, Beijing China, Nov. 2022, https://doi.org/10.1145/3581807.3581868.
- Liang, Y. Hao, Z. Xu, N. Li and Q. Zhao, "Identifying abstinent heroin addicts on the basis of single channel’s ERP and behavioral data in the gambling task", Proceeding of the IEEE/BIBM, pp. 650-656, Seoul, Korea (South), Dec. 2020, doi: 10.1109/BIBM49941.2020.9313164.
- Y. Wang, R. Kydd, T.A. Wouldes, M. Jensen, B.R. Russell, “Changes in resting EEG following methadone treatment in opiate addicts”, Clinical Neurophysiology, vol. 126, no. 5, pp. 943-950, 2015, https://doi.org/10.1016/j.clinph.2014.08.021.
- Shourie, M. Firoozabadi, K. Badie, “Neurofeedback training protocols based on spectral EEG feature subset and channel selection for performance enhancement of novice visual artists”, Biomedical Signal Processing and Control, vol. 43, pp. 117-129, 2018, https://doi.org/10.1016/j.bspc.2018.02.017.
- Jurewicz, K. Paluch, E. Kublik, J. Rogala, M. Mikicin, A. Wróbel, “EEG-neurofeedback training of beta band (12–22 Hz) affects alpha and beta frequencies–A controlled study of a healthy population”, Neuropsychologia, vol. 108, pp. 13-24, 2018, https://doi.org/10.1016/j.neuropsychologia.2017.11.021.
- H. Franken, C.J. Stam, V.M. Hendriks, W.V.D. Brink, “Neurophysiological evidence for abnormal cognitive processing of drug cues in heroin dependence”, Psychopharmacology, vol. 170, pp. 205-212, 2003, doi: https://doi.org/10.1007/s00213-003-1542-7.
- Hu, Q. Dong, Y. Hao, Q. Zhao, J. Shen, F. Zheng, “Effective brain network analysis with resting-state EEG data: A comparison between heroin abstinent and non-addicted subjects”, Journal of Neural Engineering, vol. 14, no. 4, Article Paper: 046002, May 2017, doi: 10.1088/1741-2552/aa6c6f.
- M. Liu, M. Lucas, F. Badami, W. Wu, A. Etkin, T.F. Yuan, "Cortical plasticity differences in substance use disorders", Fundamental Research, 2023, https://doi.org/10.1016/j.fmre.2023.02.015.
- Turnip, K.D. Esti, M.F. Amri, A.I. Simbolon, M.A. Suhendra, S. IsKandar, F.F. Wirakusumah, "Detection of drug effects on brain activity using EEG-P300 with similar stimuli”, IOP Conference Series: Materials Science and Engineering, Article Number: 012042, June 2017, doi: 10.1088/1757-899X/220/1/012042.
- Motlagh, F. Ibrahim, R. Rashid, T. Seghatoleslam, H. Habil, “Investigation of brain electrophysiological properties among heroin addicts: quantitative eeg and event‐related potentials”, Journal of Neuroscience Research, vol. 95, no. 8, pp. 1633-1646, 2017, doi: https://doi.org/10.1002/jnr.23988.
- Turnip, S.M. Agung, E.K. Dwi, L.S. Faza, W.L. Simon, A.S. Siti, N.I. Arifah, S.P. Daniel," Methadone effects on frontal brain lobe based EEG-P300 waves in drug rehabilitation patients", Proceedings of the ICAE, pp. 5-11, Jan. 2020, https://doi.org/10.5220/0010350600050011.
- Motlagh, F. Ibrahim, R. Rashid, N. Shafiabady, T. Seghatoleslam, H. Habil, “Acute effects of methadone on EEG power spectrum and event-related potentials among heroin dependents”, Psychopharmacology, vol. 235, pp. 3273-3288, 2018, https://doi.org/10.1007/s00213-018-5035-0.
- Y. Badr, E.A. Gad, A.A. Mubarak, Y.A. El-Heneedy, A.M. Ibrahim, A.A.E. Belal, F.A.E. Deep, "Impact of tramadol and heroin abuse on electroencephalography structure and cognitive functions", Middle East Current Psychiatry, vol. 30, no. 1, Article Number: 92, Nov. 2023, https://doi.org/10.1186/s43045-023-00365-7.
- Wang, R. Peng, Q. Liu, H. Peng, “A hybrid classification to detect abstinent heroin-addicted individuals using EEG microstates”, IEEE Trans. on Computational Social Systems, vol. 9, no. 3, pp. 700-709, 2022, doi: 10.1109/TCSS.2021.3135425.
- H. Franken, C.J. Stam, V. M. Hendriks, W.V.D. Brink, “Electroencephalographic power and coherence analyses suggest altered brain function in abstinent male heroin-dependent patients”, Neuropsychobiology, vol. 49, no. 2, pp. 105-110, 2004, https://doi.org/10.1159/000076419.
- Luo, R. Yang, W. Yang, C. Duan, Y. Deng, J. Zhang, J. Chen, J. Liu, “Increased amplitude of low-frequency fluctuation in right angular gyrus and left superior occipital gyrus negatively correlated with heroin use”, Frontiers in Psychiatry, vol. 11, pp. 492, 2020, doi: https://doi.org/10.3389/fpsyt.2020.00492.
- M. Davydov, A.G. Polunina, “Heroin abusers' performance on the Tower of London Test relates to the baseline EEG alpha2 mean frequency shifts”, Progress in Neuro-Psychopharmacology and Biological Psychiatry, vol. 28, no. 7, pp. 1143-1152, 2004, doi: https://doi.org/10.1016/j.pnpbp.2004.06.006.
- G. Polunina, D.M. Davydov, “EEG spectral power and mean frequencies in early heroin abstinence”, Progress in Neuro-Psychopharmacology and Biological Psychiatry, vol. 28, no. 1, pp. 73-82, 2004, https://doi.org/10.1016/j.pnpbp.2003.09.022..
- Seif, M.R. Yousefi, N. Behzadfar, “EEG Spectral Power Analysis: A Comparison Between Heroin Dependent and Control Groups”, Clinical EEG and Neuroscience, vol. 53, no. 4, pp. 307-315, 2022, doi: https://doi.org/10.1177/15500594221089366.
- N.S. Kbah, N.K. Al-Qazzaz, S.H. Jaafer, M.K. Sabir, "Epileptic EEG activity detection for children using entropy-based biomarkers", Neuroscience Informatics, vol. 2, no. 4, Article Number: 100101, Dec. 2022, https://doi.org/10.1016/j.neuri.2022.100101.
- Cacciotti, C. Pappalettera, F. Miraglia, P.M. Rossini, F. Vecchio, "EEG entropy insights in the context of physiological aging and Alzheimer’s and Parkinson’s diseases: A comprehensive review", GeroScience, pp. 1-21, May 2024, https://doi.org/10.1007/s11357-024-01185-1.
- Bandt, “A new kind of permutation entropy used to classify sleep stages from invisible EEG microstructure”, Entropy, vol. 19, no. 5, pp. 197, 2017, doi: https://doi.org/10.3390/e19050197.
- S. Amer, S.B. Belhaouari, "EEG signal processing for medical diagnosis, healthcare, and monitoring: A comprehensive review", IEEE Access, vol. 11, pp. 143116-143142, Dec. 2023, doi: 10.1109/ACCESS.2023.3341419.
- R. Acharya, H. Fujita, V.K. Sudarshan, S. Bhat, J.E. Koh, “Application of entropies for automated diagnosis of epilepsy using EEG signals: A review” Knowledge-based systems, vol. 88, pp. 85-96, 2015, https://doi.org/10.1016/j.knosys.2015.08.004.
- S. Marks, K.V. Saboo, Ç. Topçu, M. Lech, T.P. Thayib, P. Nejedly, V. Kremen, G.A. Worrell, M.T. Kucewicz, “Independent dynamics of low, intermediate, and high frequency spectral intracranial EEG activities during human memory formation”, NeuroImage, vol. 245, Article Number: 118637, 2021, https://doi.org/10.1016/j.neuroimage.2021.118637.
- R. Yousefi, A. Dehghani, S. Golnejad, M. M. Hosseini, “Comparing EEG-based epilepsy diagnosis using neural networks and wavelet transform.” Applied Sciences, vol. 13, no. 18, Article Number 10412, 2023.
- Moaveninejad, V. D'Onofrio, F. Tecchio, F. Ferracuti, S. Iarlori, A. Monteriù, C. Porcaro, "Fractal Dimension as a discriminative feature for high accuracy classification in motor imagery EEG-based brain-computer interface", Computer Methods and Programs in Biomedicine, vol. 244, Article Number: 107944, Feb. 2024, https://doi.org/10.1016/j.cmpb.2023.107944.
- Puri, S. Nalbalwar, A. Nandgaonkar, A. Wagh. "EEG-based diagnosis of alzheimer's disease using kolmogorov complexity", Advances in Intelligent Systems and Computing, vol. 1354, pp. 157-165, July 2021, https://doi.org/10.1007/978-981-16-2008-9_15.
- Lal, A.V. Chikkankod, L. Longo, “Fractal dimensions and machine learning for detection of Parkinson’s disease in resting-state electroencephalography”, Neural Comput and Applic, vol. 36, pp. 8257–8280, 2024, https://doi.org/10.1007/s00521-024-09521-4.
- Motamedi-Fakhr, M. Moshrefi-Torbati, M. Hill, C.M. Hill, P.R. White, “Signal processing techniques applied to human sleep EEG signals- A review”, Biomedical Signal Processing and Control, vol. 10, pp. 21-33, 2014, https://doi.org/10.1016/j.bspc.2013.12.003.
- Liu, Y. Chen, G. Fraga-González, V. Szpak, J. Laverman, R.W. Wiers, K.R. Ridderinkhof, "Resting-state EEG, substance use and abstinence after chronic use: A systematic review", Clinical EEG and Neuroscience, vol. 53, no. 4, pp. 344-366, July 2022, https://doi.org/10.1016/j.pscychresns.2022.111447.
- Alper, R.J. Chabot, A.H. Kim, L.S. Prichep, E.R. John, "Quantitative EEG correlates of crack cocaine dependence", Psychiatry Research: Neuroimaging, vol. 35, no. 2, pp. 95-105, Dec. 1990, https://doi.org/10.1016/0925-4927(90)90013-V.
- Shen, H. Niu, Q. Xia, B. Zou, Y. Zheng, Y. Zhao, L. Li, X. Liu, L. Zhang, "Automatic epileptic tissue localization through spatial pattern clustering of high frequency activity", IEEE Trans. on Neural Systems and Rehabilitation Engineering, vol. 31, pp. 981-990, 2023, https://doi.org/10.1109/TNSRE.2023.3237226.
- Talukdar, S.M. Hazarika, J.Q. Gan, "Adaptation of Common Spatial Patterns based on mental fatigue for motor-imagery BCI", Biomedical Signal Processing and Control, vol. 58, Article Number: 101829, April 2020, https://doi.org/10.1016/j.bspc.2019.101829.
- Tobeiha, N. Behzadfar, M.R. Yousefi-Najafabadi, H. Mahdavi-Nasab, G. Shahgholian, "Choosing the distinguishing frequency feature of people addicted to heroin from healthy while resting", Signal and Data Processing, vol. 19, no. 3, pp. 49-64, Dec. 2022, https://doi.org/10.52547/jsdp.19.3.49.
- H. Franken, C.J. Stam, V. M. Hendriks, W.V.D. Brink, "Electroencephalographic power and coherence analyses suggest altered brain function in abstinent male heroin-dependent patients", Neuropsychobiology, vol. 49, no. 2, pp. 105-110, June 2004, https://doi.org/10.1159/000076419.
- Luo, R. Yang, W. Yang, C. Duan, Y. Deng, J. Zhang, J. Chen, J. Liu, “Increased amplitude of low-frequency fluctuation in right angular gyrus and left superior occipital gyrus negatively correlated with heroin use”, Frontiers in Psychiatry, vol. 11, Article Number: 492, 2020, https://doi.org/ https://doi.org/10.3389/fpsyt.2020.00492.
|